Abstract
Bacterial infections during wound healing impede the healing process and trigger local or systemic inflammatory reactions. Consequently, there is an urgent need to develop a new material with antimicrobial and antioxidant properties to promote infected wound healing. A synergistically antimicrobial and antioxidant hyaluronic acid hydrogel (HMn) is prepared by employing MnO2 nanosheets into 4ARM-PEG5000-SH crosslinked methacrylated hyaluronic acid (HAMA) network. The coordination between sulfhydryl groups of 4ARM-PEG5000-SH and MnO2 nanosheets ensures entrapment of the nanosheets within the hydrogel, while the interaction between 4ARM-PEG5000-SH and HAMA results in facile gelation through thiol-ene click reaction. MnO2 nanosheets exhibit strong photothermal properties and reactive oxygen species (ROS) scavenging abilities, while hyaluronic acid promotes wound healing. When subjected to near-infrared (NIR) irradiation, the HMn achieves a bactericidal rate of 95.24 % for Staphylococcus aureus and nearly 100 % for Escherichia coli. In animal experiments, treatment with the HMn under NIR irradiation results in the best wound healing outcomes. Both in vitro and vivo biocompatible assays demonstrate that the HMn has rarely cell cytotoxicity and tissue damage. The HMn is easy to prepare and has good biocompatibility as well as efficient antibacterial and antioxidant properties, providing a novel method for the treatment of infected wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.