Abstract

Reversible proton-conducting solid oxide cells (R-PSOCs) have the potential to be the most efficient and cost-effective electrochemical device for energy storage and conversion. A breakthrough in air electrode material development is vital to minimizing the energy loss and degradation of R-PSOCs. Here we report a class of triple-conducting air electrode materials by judiciously doping transition- and rare-earth metal ions into a proton-conducting electrolyte material, which demonstrate outstanding activity and durability for R-PSOC applications. The optimized composition Ba0.9Pr0.1Hf0.1Y0.1Co0.8O3-δ (BPHYC) consists of three phases, which have a synergistic effect on enhancing the performance, as revealed from electrochemical analysis and theoretical calculations. When applied to R-PSOCs operated at 600 °C, a peak power density of 1.37 W cm-2 is demonstrated in the fuel cell mode, and a current density of 2.40 A cm-2 is achieved at a cell voltage of 1.3 V in the water electrolysis mode under stable operation for hundreds of hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.