Abstract

Developing low-cost and efficient methods to enhance the electrochemiluminescence (ECL) intensity of luminophores is highly desirable and challenging. Herein, we develop a synergistic promotion strategy based on three types of co-reaction accelerators to achieve an efficient SnO2 quantum dots (SnO2 QDs)-based ternary ECL system. Specifically, the MnO2 nanoflowers (MnO2 NFs), Ag nanoparticles (Ag NPs) and hemin/G-quadruplex were rationally selected as co-reaction accelerators. Owing to the synergistic effect, the deft integration of three types of co-reaction accelerators enabled better structural stability, more exposed catalytic active sites, and faster charge transfer, thus more effectively facilitating the reduction of co-reactant (S2O82−) compared with that of the single co-reaction accelerator. To demonstrate the practical utility of this principle, an “on-off-super on” ECL biosensor was constructed in combination with a 3D DNA walker, which showed a superior linear range (10 aM–100 pM) and a low detection limit (2.9 aM) for the highly-sensitive miRNA-21 detection. In general, this work firstly reported that three types of co-reaction accelerators were deftly integrated to remarkably amplify the ECL emission of SnO2 QDs, and provided brand-new perspectives for research on the ingenious design of the structure and component of highly efficient co-reaction accelerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call