Abstract

This paper proposes a data-driven algorithm for locating the source of forced oscillations and suggests a physical interpretation for the method. By leveraging the sparsity of forced oscillations along with the low-rank nature of synchrophasor data, the problem of source localization under resonance conditions is cast as computing the sparse and low-rank components using Robust Principal Component Analysis (RPCA), which can be efficiently solved by the exact Augmented Lagrange Multiplier method. Based on this problem formulation, an efficient and practically implementable algorithm is proposed to pinpoint the forced oscillation source during real-time operation. Furthermore, theoretical insights are provided for the efficacy of the proposed approach, by use of physical model-based analysis, specifically by highlighting the low-rank nature of the resonance component matrix. Without the availability of system topology information, the proposed method can achieve high localization accuracy in synthetic cases based on benchmark systems and real-world forced oscillations in the power grid of Texas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.