Abstract

Bidirectional inductive power transfer (IPT) systems are attractive for applications such as electric vehicles and vehicle-to-grid systems which preferably require “contactless” and two-way power transfer. However, in contrast to unidirectional IPT systems, bidirectional IPT systems require more sophisticated control strategies to control the power flow. An indispensible component of such control strategies is the robust and accurate synchronization between the primary- and pickup-side converters, without which the transfer of real power in any direction cannot be guaranteed. This paper proposes a novel technique that synchronizes converters on both the primary and pickup sides of bidirectional IPT systems. The technique uses an auxiliary winding, located on the pickup side, to produce a synchronizing signal which, in turn, can be utilized to regulate the real power flow. This paper also presents a mathematical model for the proposed technique and investigates its sensitivity for component tolerances. The viability of the technique, which is applicable to both single- and multiple-pickup IPT systems, is demonstrated through both simulations and experimental results of a 1-kW prototype bidirectional IPT system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call