Abstract
SummaryWe present the design of a state observer for Lagrangian systems subjected to frictionless geometric unilateral constraints. A master–slave synchronization setup is used in which the unidirectional coupling only consists of the information of the impact time instants. After a brief synchronization phase, the obtained observer replicates the full state of the observed system, independently of the initial conditions and even in the presence of accumulation points (Zeno behavior).The key idea is that the (virtual) observer system is subjected to switched kinematic unilateral constraints such that it may enjoy the property of incremental stability when the impact law is maximal monotone. The main inequality impact laws for hard unilateral constraints, that is, the generalized Poisson's and Newton's impact law, are under mild assumptions maximal monotone, which is a stronger condition than dissipativity. The results are applied to two different examples of mechanical impact oscillators. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.