Abstract

Biological synapses store and process information simultaneously by tuning the connection between two neighboring neurons. Such functionality inspires the task of hardware implementation of neuromorphic computing systems. Ionic/electronic hybrid three-terminal memristive devices, in which the channel conductance can be modulated according to the history of applied voltage and current, provide a more promising way of emulating synapses by a substantial reduction in complexity and energy consumption. 2D van der Waals materials with single or few layers of crystal unit cells have been a widespread innovation in three-terminal electronic devices. However, less attention has been paid to 2D transition-metal oxides, which have good stability and technique compatibility. Here, nanoscale three-terminal memristive transistors based on quasi-2D α-phase molybdenum oxide (α-MoO3 ) to emulate biological synapses are presented. The essential synaptic behaviors, such as excitatory postsynaptic current, depression and potentiation of synaptic weight, and paired-pulse facilitation, as well as the transition of short-term plasticity to long-term potentiation, are demonstrated in the three-terminal devices. These results provide an insight into the potential application of 2D transition-metal oxides for synaptic devices with high scaling ability, low energy consumption, and high processing efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call