Abstract

Many important real-life optimization problems can be described as optimizing a linear objective function under linear constraints—i.e., as a linear programming problem. This problem is known to be not easy to solve. Reasonably natural algorithms—such as iterative constraint satisfaction or simplex method—often require exponential time. There exist efficient polynomial-time algorithms, but these algorithms are complicated and not very intuitive. Also, in contrast to many practical problems which can be computed faster by using parallel computers, linear programming has been proven to be the most difficult to parallelize. Recently, Sergei Chubanov proposed a modification of the iterative constraint satisfaction algorithm: namely, instead of using the original constraints, he proposed to come up with appropriate derivative constraints. Interestingly, this idea leads to a new polynomial-time algorithm for linear programming—and to efficient algorithms for many other constraint satisfaction problems. In this paper, we show that an algebraic approach—namely, the analysis of the corresponding symmetries—can (at least partially) explain the empirical success of Chubanov’s idea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.