Abstract
Most simulation methods for compressible flow attain numerical stability at the cost of swamping the fine turbulent flow structures by artificial dissipation. This article demonstrates that numerical stability can also be attained by preserving conservation laws at the discrete level. A new mathematical explanation of conservation in compressible flow reveals that many conservation properties of convection are due to the skew-symmetry of the convection operator. By preserving this skew-symmetry at the discrete level, a fourth-order accurate collocated symmetry-preserving discretisation with excellent conservation properties is obtained. Also a new symmetry-preserving regularisation subgrid-scale model is proposed. The proposed techniques are assessed in simulations of compressible turbulent channel flow. The symmetry-preserving discretisation for compressible flow has good stability without artificial dissipation and yields acceptable results already on coarse grids. Regularisation does not consistently improve upon no-model results, but often compares favourably with eddy-viscosity models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.