Abstract

Several methods for computing the smallest eigenvalues of a symmetric and positive definite Toeplitz matrix T have been studied in the literature. Most of them share the disadvantage that they do not reflect symmetry properties of the corresponding eigenvector. In this note we present a Lanczos method which approximates simultaneously the odd and the even spectrum of T at the same cost as the classical Lanczos approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.