Abstract

We propose a mechanism for fixing the velocity of relativistic solitons based on the breaking of the Lorentz symmetry of the sine-Gordon (SG) model. The proposal is first elaborated for a molecular chain model as the simple pendulum limit of a double pendulums chain. It is then generalized to a full class of two-dimensional field theories of the sine-Gordon type. From a phenomenological point of view, the mechanism allows one to select the speed of a SG soliton just by tuning elastic couplings constants and kinematical parameters. From a fundamental, field-theoretical point of view we show that the characterizing features of relativistic SG solitons (existence of conserved topological charges and stability) may be still preserved even if the Lorentz symmetry is broken and a soliton of a given speed is selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.