Abstract

In this paper, a new WENO procedure is proposed to approximate the viscosity solution of the Hamilton–Jacobi (HJ) equations. In the one-dimensional (1D) case, an optimum polynomial on a six-point stencil is obtained. This optimum polynomial is fifth-order accurate in regions of smoothness. Then, this optimum polynomial is considered as a symmetric and convex combination of four polynomials with ideal weights. Following the methodology of the classic WENO-Z procedure [Borges et al., J. Comput. Phys. 227, 3191 (2008)], the new nonoscillatory weights are calculated with the ideal weights. Several numerical experiments in 1D, 2D and 3D are performed to illustrate the capability of the scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call