Abstract

An overview of numerical techniques and previous investigations related to the solution of advection-dominated transport processes is presented. In addition a new Symmetrical Streamline Stabilization (S3) scheme is introduced. The basis of the technique is to treat the transport equation in two steps. In the first step the dispersion part is approximated by a standard Galerkin approach, while in the second step the advection is approximated by a least-squares method. The two parts are reassembled, resulting in one system of equations. The resulting coefficients' matrix is symmetric. Only half of a sparse matrix needs to be stored. Robust iterative algorithms for symmetrical systems of equations such as the preconditioned conjugate gradient method (PCG) can be successfully used. The new method leads to an implicit introduction of an ‘artificial diffusion’ term. Solute transport with high Peclet and Courant numbers does not lead to oscillations due to an inherent upwind damping. The upwind effect acts only in flow direction. The efficiency of the new formulation in terms of accuracy and computation time is shown in comparison with the Galerkin approach for mesh parallel and mesh oblique high advective solute transport. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.