Abstract

For the purpose of improving performance and reducing the fabrication difficulty of terahertz traveling wave tubes (TWTs), this paper proposes a novel single-section high-gain slow wave structure (SWS), which is named the symmetrical quasi-synchronous step-transition (SQSST) folded waveguide (FW). The SQSST-FW SWS has an artificially designed quasi-synchronous region (QSR) to suppress self-oscillations for sustaining a high gain in an untruncated circuit. Simultaneously, a symmetrical design can improve the efficiency performance to some extent. A prototype of the SQSST-FW SWS for 650 GHz TWTs is designed based on small-signal analysis and numerical simulation. The simulation results indicate that the maximum saturation gain of the designed 650 GHz SQSST-FW TWT is 39.1 dB in a 34.3 mm slow wave circuit, occurring at the 645 GHz point when a 25.4 kV 15 mA electron beam and a 0.43 mW sinusoidal input signal are applied. In addition, a maximum output power exceeding 4 W is observed at the 648 GHz point using the same beam with an increased input power of around 2.8 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.