Abstract

Cascaded H-bridge (CHB) multilevel inverters (MLIs) have been widely used for power electronics systems. While high-voltage blocking across power switches is not a constraint for low voltage applications, the research trend has been oriented to the design of more compact module topologies as an alternative for CHB. Despite the generation of more voltage levels with reduced switch count, the existing module topologies in recent literature take no account of the freewheeling current path during dead-time, thus, inducing multistep jumps in voltage levels and giving rise to undesirable voltage spikes. Addressing this concern, this paper proposes two symmetrical compact-module topologies for cascaded MLI, where freewheeling current path during dead-time is provided for smooth transition between voltage levels to prevent voltage spikes. The proposed 7-level and 13-level compact-modules demonstrated low number of conducting switches for all voltage levels. Comprehensive analysis and comparison with the latest module topologies are conducted. To validate the operation of the proposed compact-module topologies, simulation and experimental results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.