Abstract

ABSTRACTA new miniature diamond anvil cell was specifically designed to detect superconductivity using a SQUID (Superconducting QUantum Interference Device) magnetometer in dense hydrides directly synthesized by the reaction of hydrogen with a chemical element. The cell, made of a CuTi alloy, is fully symmetric with a very low magnetic background allowing the detection of the superconductivity of a sample as small as 3.4 × 104 µm3 without background subtraction. DC measurements or AC measurements in a Magnetic Property Measurement System 3 SQUID magnetometer from Quantum Design could be performed at temperatures as low as 3 K. This high pressure cell is inserted in a modified conventional membrane diamond anvil cell to be driven for hydrogen gas loading and for fine pressure increase before magnetic measurements are performed. To synthetize and structurally characterize the superconducting sample, a 21° optical and 8.6° X-ray acceptance angle allows one to perform laser heating and X-ray diffraction at the same time. A first measurement is shown on the PdH system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call