Abstract

Unmanned aerial vehicles have found applications in fields such as environmental monitoring and the military. Although the collected data in some of these application domains are sensitive, public channels are deployed during the communication process. Therefore, many protocols have been presented to preserve the confidentiality and integrity of the exchanged messages. However, numerous security and performance challenges have been noted in the majority of these protocols. In this paper, an elliptic curve cryptography (ECC) and symmetric key-based protocol is presented. The choice of ECC was informed by its relatively shorter key sizes compared to other asymmetric encryption algorithms such as the Rivest–Shamir–Adleman (RSA) algorithm. Security analysis showed that this protocol provides mutual authentication, session key agreement, untraceability, anonymity, forward key secrecy, backward key secrecy, and biometric privacy. In addition, it is robust against smart card loss, password guessing, known secret session temporary information (KSSTI), privileged insider, side-channeling, impersonation, denial-of-service (DoS), and man-in-the-middle (MitM) attacks. The comparative performance evaluation showed that it has relatively low computation, storage, and communication complexities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call