Abstract

We demonstrate a symbolic elimination technique to solve a nine-parameter 3D affine transformation when only three known points in both systems are given. The system of nine equations is reduced to six by subtracting the equations and eliminating the translation parameters. From these six equations, five variables are eliminated using a Grobner basis to get a quadratic univariate polynomial, from which the solution can be expressed symbolically. The main advantage of this result is that we do not need to guess initial values of the nine parameters, which is necessary in the case of the traditional solution of the nonlinear system of equations. This result can be useful in geodesy, robotics, and photogrammetry when occasionally only three known points in both systems are given or when a Gauss‐ Jacobi combinatorial solution may be required for certain reasons, for example detecting outliers by using variancecovariance matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.