Abstract

Methods for solving the differential equation describing the wave functions of a polarizable particle in the Coulomb potential are discussed. Relations between the coefficients under which the general solution of this equation can be found in analytical form are obtained. For the case of zero polarizability, the general solution to this equation in terms of special functions is obtained; for the first values of the parameter j, plots of the corresponding solutions are presented. For nonzero polarizability and certain specially chosen values of the energy level parameter, solutions possessing the required physical properties for the varying parameter j are constructed on fairly large intervals of the argument values using numerical methods and functional objects of the type DifferentialRoot. Instructions in Mathematica are presented that allow computer-aided analysis using numerical and analytical methods and visualization of the resulting solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.