Abstract
This paper presents a method for obtaining linearized state space representations of open or closed loop multibody dynamic systems. The paper develops a symbolic formulation for multibody dynamic systems which result in an explicit set of symbolic equations of motion. The symbolic equations are then used to perform symbolic linearizations. The resulting symbolic, linear equations are in terms of the system parameters and the equilibrium point, and are valid for any equilibrium point. Finally, a method is developed for reducing a linearized, constrained multibody system consisting of a mixed set of algebraic-differential equations to a reduced set of differential equations in terms of an independent coordinate set. An example is used to demonstrate the technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Mechanical Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.