Abstract

Imidazole, a subunit of histidine, plays a crucial role in proton-relay processes that are important for various biological activities, such as metal efflux, viral replication and photosynthesis. We show here how an imidazolyl ring incorporated into a rotary switch based on a hydrazone enables a switching cascade that involves proton relay between two different switches. The switching process starts with a single input, zinc(II), that initiates an E/Z isomerization in the hydrazone system through a coordination-coupled proton transfer. The resulting imidazolium ring is unusually acidic and, through proton relay, activates the E/Z isomerization of a non-coordinating pyridine-containing hydrazone switch. We hypothesize that the reduction in the acid dissociation constant of the imidazolium ring results from a combination of electrostatic and conformational effects, the study of which might help elucidate the proton-coupled electron-transfer mechanism in photosynthetic bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.