Abstract

This paper estimates a switching autoregressive conditional heteroskedastic time series model for returns on the daily German stock market index. Volatility clustering is captured by persistent periods of different volatility levels and by the dependence on past innovations. We introduce a leverage term to model the asymmetric response of volatility to shocks. Model specification and estimation is performed within a Bayesian framework using Markov Chain Monte Carlo simulation methods. Model diagnostics document a good fit of the switching ARCH model. The persistence of shocks in volatility coming from the autoregressive conditional part of the variance is considerably lower than that obtained using a GARCH(1,1) model. Our volatility estimate closely follows market implied volatility. When we compare the forecasting performance, switching ARCH turns out to be an unbiased estimator of realized volatility. Nevertheless, over all forecast horizons, model-based volatility forecasts do not add information about future volatility. Up to a 7-day horizon, market implied volatility already contains nearly all information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.