Abstract

Selective reduction of nitroarenes is extremely valuable in industrial chemical production. The main reduced products are usually aniline derivatives obtained using single-component noble- or transition-metal catalysts; however, other important products such as hydrazobenzene derivatives always involve in harsh conditions and multiple reaction steps. Here, we realize an unexpected switchable reduction of nitroarenes into aniline or hydrazobenzene derivatives with high yield and selectivity just by controlling the molar ratio of nitroarenes to N2H4·H2O with a nickel–tungsten carbide composite nanocatalyst loaded on carbon (Ni-WC/C). A series of control experiments and density functional theory (DFT) calculations indicate that the multiple interfaces between Ni and WC can induce a synergistic effect, significantly modulating the electronic structure of the Ni-WC/C catalyst, and endowing the catalyst with switchable selectivity and high activity for the reduction of nitroarenes by hydrogenation. This synergistic multi-interfacial catalyst may offer a new way to design and explore highly efficient and selective catalysts for the controllable reduction of nitroarenes and similar hydrogenation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.