Abstract

A multifunctional bis-branched [1]rotaxane containing a perylene bisimide (PBI) core and two identical bistable[1]rotaxane arms terminated with ferrocene units was prepared and characterized by (1)H NMR, (13)C NMR, and 2D ROESY NMR spectroscopies and by HR-ESI spectrometry. The system is shown to possess several key features: (1) In acetone solution, external acid-base stimuli can result in relative mechanical movements of its ring and thread, which can induce extension and contraction movements of the whole system accompanied by a rotational movement of the ferrocene units, thus realizing dual-mode molecular motions, and the optimized conformations at different states are obtained through molecular dynamics simulations employing the general Amber force field. (2) The introduction of PBI enables the system fluorescence encoding through distance-dependent photoinduced electron transfer process from the ferrocene units to the PBI fluorophore. (3) The addition of Zn(2+) can increase the degree of aggregation of the system, while adding base hinders aggregation because of the movement of the macrocycle. The tunable aggregated nanostructural morphologies of [1]rotaxane were examined by scanning electron microscopy. These results can pave the way to achieve precise control of integrated and coupling nanomechanical motions at a single-molecule level and provide more insight into controlling the aggregate behavior of switchable mechanically interlocked molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.