Abstract

Phytopathogenic microorganisms, being able to cause plant diseases, usually interact with hosts asymptomatically, resulting in the development of latent infections. Knowledge of the mechanisms that trigger a switch from latent to typical, symptomatic infection is of great importance from the perspectives of both fundamental science and disease management. No studies to date have compared, at the systemic molecular level, the physiological portraits of plants when different infection types (typical and latent) are developed. The only phytopathogenic bacterium for which latent infections were not only widely described but also at least fluently characterized at the molecular level is Pectobacterium atrosepticum (Pba). The present study aimed at the comparison of plant transcriptome responses during typical and latent infections caused by Pba in order to identify and then experimentally verify the key molecular players that act as switchers, turning peaceful plant-Pba coexistence into a typical infection. Based on RNA-Seq, we predicted plant cell wall-, secondary metabolism-, and phytohormone-related genes whose products contributed to the development of the disease or provided asymptomatic plant-Pba interactions. By treatment tests, we confirmed that a switch from latent to typical Pba-caused infection is determined by the plant susceptible responses mediated by the joint action of ethylene and jasmonates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call