Abstract
AbstractThe authors propose a novel object detection algorithm for identifying bird nests in medium voltage power line aerial images, which is crucial for ensuring the safe operation of the power grid. The algorithm utilises an improved Swin Transformer as the main feature extraction network of Fast R‐CNN, further enhanced with a channel attention and modified binary self‐attention mechanism to improve the feature representation ability. The proposed algorithm is evaluated on a newly constructed image dataset of medium voltage transmission lines containing bird nests, which are annotated and classified. Experimental results show that the proposed algorithm achieves satisfied accuracy and robustness in recognising bird nests compared to traditional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IET Cyber-Physical Systems: Theory & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.