Abstract
The dynamical low-rank (DLR) approximation is an efficient technique to approximate the solution to matrix differential equations. Recently, the DLR method was applied to radiation transport calculations to reduce memory requirements and computational costs. This work extends the low-rank scheme for the time-dependent radiation transport equation in 2-D and 3-D Cartesian geometries with discrete ordinates discretization in angle (SN method). The reduced system that evolves on a low-rank manifold is constructed via an unconventional basis update and Galerkin integrator to avoid a substep that is backward in time, which could be unstable for dissipative problems. The resulting system preserves the information on angular direction by applying separate low-rank decompositions in each octant where angular intensity has the same sign as the direction cosines. Then, transport sweeps and source iteration can efficiently solve this low-rank-SN system. The numerical results in 2-D and 3-D Cartesian geometries demonstrate that the low-rank solution requires less memory and computational time than solving the full rank equations using transport sweeps without losing accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.