Abstract

The electromagnetic acoustic transducer (EMAT) is a powerful and useful non-destructive testing technology for structural health monitoring. However, EMAT has an issue of low efficiency in conversion and its signal is easily affected by noise, which make it difficult to accurately identify and evaluate structural defects. Thereby, signal de-noising preprocessing is essential for the evaluation of defects. In this paper, we proposed an improved singular value decomposition (SVD) de-noising method based on the fitting threshold for EMAT signal. For SVD de-noising method, the key point is to determine the singular value threshold for reconstructing the signal. We applied a segmented regression model to find the appropriate threshold in this approach. To investigate the efficacy of the proposed method, simulation signals and experimental signals are used for verification respectively. A comparative analysis has been under-taken to confirm that the proposed signal de-noising has advantages over other methods in EMAT signal noise reduction, and it is useful for more accurate evaluation of defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.