Abstract

Resource utilization of solid waste promotes resource conservation, energy transformation and sustainable development. In this study, we developed a synthetic strategy for converting biomass waste, such as waste bamboo powder, into a smart material with thermochromic properties - hydroxypropyl cellulose (HPC). The synthesis process includes extraction of cellulose and modification with hydroxypropyl groups. The maximum extraction efficiency of cellulose from raw bamboo powder was up to 48 % by carefully adjusting the reaction conditions including NaOH concentration, reaction time, and treatment temperature. The maximum yield of modification process was achieved to 1.32 g/g by optimizing alkalization temperature, alkalization time, NaOH concentration, propylene oxide concentration, etherification temperature and etherification time. The samples were characterized by a variety of techniques such as FTIR, 1H NMR, XRD, SEM to validate the micro-structure of the extracted cellulose the HPC materials. Moreover, this study explored the potential application of HPC hydrogel in smart window application, and evaluated its building energy saving efficiency under different climate conditions through computational simulation. The corresponding results showed that the HPC hydrogel smart window could have significant energy saving potential compared to ordinary clear glass window. This novel approach of converting waste resources into high valued thermochromic materials for smart windows, not only reduces waste disposal demand for excessive land-use and energy consumption but also shows a positively contributes to sustainable development, environmental protection, as well as energy conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.