Abstract

Herein, we demonstrated a sustainable green approach for the preparation of fluorescent biocompatible carbon quantum dots by microwave-assisted reflux synthesis from Aloe barbadensis Miller (Aloe vera) extract. The Transmission Electron Microscopic images reveal that the as-prepared CQDs are spherical with less than 5nm in size. The CQDs are amorphous, showed an excitation-independent behaviour, emitted blue fluorescence and have a fluorescence quantum yield of 31%. The presence of -OH groups contributed to the blue emission and helped CQDs to disperse uniformly in an aqueous solution. The prepared CQDs were employed as a photocatalyst for the environmental remediation to degrade the anionic dye, eosin yellow under visible light irradiation. The results showed that the CQDs exhibited excellent photocatalytic efficiency of 98.55% within 80min and a 100% efficiency within 100min. Further, the cytotoxic properties of as-prepared CQDs are investigated in the MCF-7 breast cancer cell line using MTT assay. The results demonstrated a notable reduction in cell viability in a dose-subjected manner, and the cell viability decreased to 50% (IC50) at a concentration of 52.2±1.35μg/mL. Furthermore, cellular internalization of CQDs in breast cancer cells is studied. As expected, CQDs are found to internalize by the cancer cells with blue emission as revealed by fluorescence microscope. In the end, CQDs in human breast cancer cells demonstrate the anti-proliferative effect and are found to be an impressive fluorescent probe for live-cell imaging, paving a path for its potential biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call