Abstract

A sustainable and green approach was developed for the scalable synthesis of uncommon naturally occurring phospholipid species, Hemi-bis(monoacylglycero)phosphates (Hemi-BMPs) and bis(diacylglycero)phosphates (BDPs) via the phospholipase D (PLD) mediated transphosphatidylation. PLD from Streptomyces sp. showed great substrate promiscuity for both phospholipids from different biological sources, and alcohol donors with diverse regiochemistry; monoacylglycerols with diverse fatty acyl structures (C12-C22), affording 74-92 wt% yields in 2 h. Experimental results demonstrated that the reaction rate is rather independent of phosphatidyls but to a large extent governed by the size, shape and regiolocation of fatty acyls incorporated on the glycerol backbone, particularly for the regio-isomers of bulky diacylglycerols (Sn-1,3 or Sn-1,2), which displays great diversity. In addition, a plausible mechanism is proposed based on molecular simulations for an elaborated explanation of the reaction thermodynamic and kinetic favorability toward the synthesis of Hemi-BMPs and BDPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call