Abstract
A new class of unorthodox morphologies of pheophytin, called the semi- and fully-derivative forms, was suspected to have existed all along in the electron transfer pathway of photosystem-II (PS-II) in plants. More importantly, as likely a natural pre-form of the latter, the semi-derivative morphology was further conjectured to play a catalytic role in the hydrogen fuel cells owing to its particular structural features. In this research, the proposed new class of derivative morphologies was speculated to be energetically more favorable, than the orthodox one in textbooks, in supporting a proton current within its porphyrin ring and in interacting with hydrogen gas molecules. This supposition appeared to be viable according to the spectral comparison among results from 1st-principle quantum calculations, measurements and literatures, as well as to the need for a proton current to address existing NMR spectra of pheophytin. Then, indirect proof of existence of such derivative’s features was provided by our experimental effort that pheophytins could efficiently getter hydrogen gas. Lastly, processed pheophytin samples were experimentally shown to be capable of catalyzing the hydrogen decomposition in fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.