Abstract
The threat of biological warfare and the emergence of new infectious agents spreading at a global scale have highlighted the need for major enhancements to the public health infrastructure. Early detection of epidemics of infectious diseases requires both real-time data and real-time interpretation of data. Despite moderate advancements in data acquisition, the state of the practice for real-time analysis of data remains inadequate. We present a nonlinear mathematical framework for modeling the transient dynamics of influenza, applied to historical data sets of patients with influenza-like illness. We estimate the vital time-varying epidemiological parameters of infections from historical data, representing normal epidemiological trends. We then introduce simulated outbreaks of different shapes and magnitudes into the historical data, and estimate the parameters representing the infection rates of anomalous deviations from normal trends. Finally, a dynamic threshold-based detection algorithm is devised to assess the timeliness and sensitivity of detecting the irregularities in the data, under a fixed low false-positive rate. We find that the detection algorithm can identify such designated abnormalities in the data with high sensitivity with specificity held at 97%, but more importantly, early during an outbreak. The proposed methodology can be applied to a broad range of influenza-like infectious diseases, whether naturally occurring or a result of bioterrorism, and thus can be an integral component of a real-time surveillance system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.