Abstract

Recommender systems are an essential tool to relieve the information overload challenge and play an important role in people’s daily lives. Since recommendations involve allocations of social resources (e.g., job recommendation), an important issue is whether recommendations are fair. Unfair recommendations are not only unethical but also harm the long-term interests of the recommender system itself. As a result, fairness issues in recommender systems have recently attracted increasing attention. However, due to multiple complex resource allocation processes and various fairness definitions, the research on fairness in recommendation is scattered. To fill this gap, we review over 60 papers published in top conferences/journals, including TOIS, SIGIR, and WWW. First, we summarize fairness definitions in the recommendation and provide several views to classify fairness issues. Then, we review recommendation datasets and measurements in fairness studies and provide an elaborate taxonomy of fairness methods in the recommendation. Finally, we conclude this survey by outlining some promising future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.