Abstract

The small size and wireless actuation of microrobots make them potential candidates for minimally invasive medicine. To advance microrobots to future clinical application, microrobotics researchers have investigated a number of key issues, in which swarm control is a primary challenge and is attracting increasing attention. As a single microrobot has limited volume and surface area, clinically relevant tasks, including <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in-vivo</i> tracking, usually require simultaneous control of a large swarm of microrobots. Unlike macroscale robots, implementing on-board actuators and sensors for microrobots is challenging, which differentiates swarm microrobotics from other swarm robotics approaches. This article systematically summarizes the state of the art for this emerging field, including actuation systems with different power sources, swarm behaviors modeling and simulation, swarm control strategies, and targeted biomedical applications. Actuation principles of microrobot swarms are categorized in detail, and critical comparisons are made to provide guidance and insight for future swarm microrobotics researchers. Considering the unique features of swarm microrobotics compared to traditional swarm robotics, this article also emphasizes the modeling, simulation, and control of microrobot swarms. Furthermore, recent biomedical applications of microrobot swarms are summarized to illustrate specific application scenarios. Finally, we provide an assessment of the future directions of swarm microrobotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.