Abstract
In this paper we survey recent results and problems of both theoretical and algorithmic character on the construction of snarks—non-trivial cubic graphs of class two, of cyclic edge-connectivity at least 4 and with girth ≥ 5. We next study the process, also considered by Cameron, Chetwynd, Watkins, Isaacs, Nedela, and Sˇkoviera, of splitting a snark into smaller snarks which compose it. This motivates an attempt to classify snarks by recognizing irreducible and prime snarks and proving that all snarks can be constructed from them. As a consequence of these splitting operations, it follows that any snark (other than the Petersen graph) of order ≤ 26 can be built as either a dot product or a square product of two smaller snarks. Using a new computer algorithm we have confirmed the computations of Brinkmann and Steffen on the classification of all snarks of order less than 30. Our results recover the well-known classification of snarks of order not exceeding 22. Finally, we prove that any snark G of order ≤ 26 is almost Hamiltonian, in the sense that G has at least one vertex v for which G \ v is Hamiltonian. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 57–86, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.