Abstract

Surface electromyographic (sEMG) signals is one most commonly used control source of exoskeleton for hand rehabilitation. Due to the characteristics of non-invasive, convenient collection and safety, sEMG can conform to the particularity of hemiplegic patients' physiological state and directly reflect human's neuromuscular activity. By way of collecting, analyzing and processing, sEMG signals corresponding to identify the target movement model would be translated into robot movement control instructions and input into hand rehabilitation exoskeleton controller. Then patients' hand can be directed to achieve the realization of the similar action finally. In this paper, the recent key technologies of sEMG-based control for hand rehabilitation robots are reviewed. Then a summarization of controlling technology principle and methods of sEMG signal processing employed by the hand rehabilitation exoskeletons is presented. Finally suitable processing methods of multi-channel sEMG signals for the controlling of hand rehabilitation exoskeleton are put forward tentatively and the practical application in hand exoskeleton control is commented also.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call