Abstract
The Pontryagin duality theorem for locally compact abelian groups (briefly, LCA groups) has been the starting point for many different routes of research in Mathematics. From its appearance there was a big interest to extend it in a context broader than LCA groups. Kaplan in the 40ʼs proposed—and it still remains open—the problem of characterization of all abelian topological groups for which the canonical mapping into its bidual is a topological isomorphism, assuming that the dual and the bidual carry the compact-open topology. Such groups are called reflexive.In this survey we deal with results on reflexivity of certain classes of groups, with special emphasis on the smaller class which better reflects the properties of LCA groups, namely that of strongly reflexive groups. A topological abelian group is said to be strongly reflexive if all its closed subgroups and its Hausdorff quotients as well as the closed subgroups and the Hausdorff quotients of its dual group are reflexive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.