Abstract

With the increasing number of applications for both surface and underwater autonomous vehicles, a great amount of control methods and guidance principles has been developed over the years. This work proposes a review of the most common of these methods. It is mainly focused on model-based nonlinear control methods and guidance principles. Notably, this work details examples and variations of model-based linearizing controllers, applications of line of sight guidance, sliding mode controllers and several other less common control methods for both fully-actuated and underactuated vehicles. Additionally, this work proposes an alternative definition of underactuation with respect to the task allowing for a better understanding of the consequences of underactuation on control. Comparison of fully-actuated and underactuated cases shows how control laws can be used to solve the problems of underactuation and what mechanisms can be used to compensate for the lack of actuation on a degree of freedom. The reviewed methods are compared and discussed with respect to their capabilities, limitations and suitability for typical tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call