Abstract

Malware, or malicious software, poses a significant threat to the security and functionality of computer systems globally. This survey provides a comprehensive analysis of current malware detection and analysis methods, focusing on data mining methodologies. The study categorizes malware detection techniques into signature-based and behaviour-based approaches, highlighting their respective strengths and weaknesses. It explores heuristic techniques enhanced by artificial intelligence, including neural networks and genetic algorithms, to improve detection accuracy. The literature review examines host-based and network-based intrusion detection systems, hybrid systems, and virtual machine introspection. The paper also discusses static and dynamic analysis methods, emphasizing the importance of analysing malware in controlled environments. Through detailed examination, this survey aims to present a thorough understanding of contemporary malware detection strategies and their applications, offering insights for future advancements in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.