Abstract

Many target tracking problems can actually be cast as joint tracking problems where the underlying target state may only be observed via the relationship with a latent variable. In the presence of uncertainties in both observations and latent variable, which encapsulates the target tracking into a variational problem, the expectation–maximization (EM) method provides an iterative procedure under Bayesian inference framework to estimate the state of target in the process which minimizes the latent variable uncertainty. In this paper, we treat the joint tracking problem using a united framework under the EM method and provide a comprehensive overview of various EM approaches in joint tracking context from their necessity, benefits, and challenging viewpoints. Some examples on the EM application idea are presented. In addition, future research directions and open issues for using EM method in the joint tracking are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.