Abstract

Electronic systems rely on efficient hardware, popularly known as system-on-chip (SoC), to support its core functionalities. A typical SoC consists of diverse components gathered from third-party vendors to reduce SoC design cost and meet time-to-market constraints. Unfortunately, the participation of third-party companies in global supply chain introduces potential security vulnerabilities. There is a critical need to efficiently detect and mitigate hardware vulnerabilities. Machine learning has been successfully used in hardware security verification as well as development of effective countermeasures. There are recent surveys on hardware Trojan detection using machine learning. To the best of our knowledge, there are no comprehensive surveys on utilization of machine learning techniques for detection and mitigation of a wide variety of hardware vulnerabilities including malicious implants (e.g., hardware Trojans), side-channel leakage, reverse engineering, and supply-chain vulnerabilities (e.g., counterfeiting, overbuilding and recycling). In this paper, we provide a comprehensive survey of hardware vulnerability analysis using machine learning techniques. Specifically, we discuss how existing approaches effectively utilize machine learning algorithms for hardware security verification using simulation-based validation, formal verification as well as side-channel analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.