Abstract

The Fast Fourier Transform and Inverse Fast Fourier Transform (FFT/IFFT) are the most significant digital signal processing (DSP) techniques used in Orthogonal Frequency Division Multiplexing (OFDM)-based applications which include day-to-day wired/wireless communications, broadband access, and information sharing. The advancements in telecommunication technologies require an efficient FFT/IFFT processing device to meet the necessary specifications which depend on the particular application. A real-time implementation of high-speed FFT/IFFT processor with less area that operates in minimal power consumption is essential in designing an OFDM integrated chip. A comparative study of efficient algorithms and architectures for FFT chip design is presented in this paper. It is also recommended that mixed-radix/higher-radix algorithm combined with Single-path Delay Commutator (SDC) architecture is appropriate for massive MIMO in 5G, optical OFDM, cooperative MIMO and multi-user MIMO-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.