Abstract
In data mining, mining sequential pattern from very huge amount of database is very useful in many applications. Most of sequential pattern mining algorithms work on static data means the database should not change. But the databases in today’s real world application do not have static data, they are incremental databases. New transactions are added at some intervals of time. For updated database, the algorithm needs to be executed again for whole sequence database. So those approaches are not appropriate to use, for that algorithm with incremental approach should be modelled and used. This paper analysis existing approaches for finding sequential pattern mining, and the survey would be helpful in forming a new model or improving some existing approach to handle incremented database & obtain sequential patterns out of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of scientific research in science, engineering and technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.