Abstract
ABSTRACT Semantic segmentation is the pixel-wise labeling of an image. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high-level and hierarchical image features; several deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmentation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorized the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analyzed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localization and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.