Abstract

Agriculture is the most important sector and the backbone of a developing country’s economy. Accurate crop yield prediction models can provide decision-making tools for farmers to make better decisions. Crop yield prediction has challenged researchers due to dynamic, noisy, non-stationary, non-linear features and complex data. The factors that influence crop yield are changes in temperature and rainfall, plant disease, pests, fertilizer, and soil quality. The paper discusses the factors affecting crop yield, explores the features utilized, and analysis deep learning methodologies and performance metrics utilized in crop yield prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.