Abstract
The supervised machine learning has been showing very useful for the automatic visual inspection task. However, little has been considered about use traditional machine learning techniques on a domain where the classes are imbalanced. This problem corresponds to dealing with the situation where one class outnumbers the other. Traditional machine learning algorithms trained with imbalance datasets can be biased towards the majority class, thus producing poor predictive accuracy over the minority class. In this paper, we present different approaches to address the class imbalance problem and how these approaches have been used in the context of automatic visual inspection. The literature shows there are few works that consider the class imbalance problem on automatic visual inspection task and it shows that the one class classification technique is the most used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Latin America Transactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.