Abstract

In the era of global-scale services, organisations produce huge volumes of data, often distributed across multiple data centres, separated by vast geographical distances. While cluster computing applications, such as MapReduce and Spark, have been widely deployed in data centres to support commercial applications and scientific research, they are not designed for running jobs across geo-distributed data centres. The necessity to utilise such infrastructure introduces new challenges in the data analytics process due to bandwidth limitations of the inter-data-centre communication. In this article, we discuss challenges and survey the latest geo-distributed big-data analytics frameworks and schedulers (based on MapReduce and Spark) with WAN-bandwidth awareness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.