Abstract
In recent years, there is a rapid growth in online communication. There are many social networking sites and related mobile applications, and some more are still emerging. Huge amount of data is generated by these sites everyday and this data can be used as a source for various analysis purposes. Twitter is one of the most popular networking sites with millions of users. There are users with different views and varieties of reviews in the form of tweets are generated by them. Nowadays Opinion Mining has become an emerging topic of research due to lot of opinionated data available on Blogs & social networking sites. Tracking different types of opinions & summarizing them can provide valuable insight to different types of opinions to users who use Social networking sites to get reviews about any product, service or any topic. Analysis of opinions & its classification on the basis of polarity (positive, negative, neutral) is a challenging task. Lot of work has been done on sentiment analysis of twitter data and lot needs to be done. In this paper we discuss the levels, approaches of sentiment analysis, sentiment analysis of twitter data, existing tools available for sentiment analysis and the steps involved for same. Two approaches are discussed with an example which works on machine learning and lexicon based respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.