Abstract
With advances in machine learning and ambient sensors as well as the emergence of ambient assisted living (AAL), modeling humans’ abnormal behaviour patterns has become an important assistive technology for the rising elderly population in recent decades. Abnormal behaviour observed from daily activities can be an indicator of the consequences of a disease that the resident might suffer from or of the occurrence of a hazardous incident. Therefore, tracking daily life activities and detecting abnormal behaviour are significant in managing health conditions in a smart environment. This paper provides a comprehensive and in-depth review, focusing on the techniques that profile activities of daily living (ADL) and detect abnormal behaviour for healthcare. In particular, we discuss the definitions and examples of abnormal behaviour/activity in the healthcare of elderly people. We also describe the public ground-truth datasets along with approaches applied to produce synthetic data when no real-world data are available. We identify and describe the key facets of abnormal behaviour detection in a smart environment, with a particular focus on the ambient sensor types, datasets, data representations, conventional and deep learning-based abnormal behaviour detection methods. Finally, the survey discusses the challenges and open questions, which would be beneficial for researchers in the field to address.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.